On the Total Outer k-Independent Domination Number of Graphs
نویسندگان
چکیده
منابع مشابه
Outer independent Roman domination number of trees
A Roman dominating function (RDF) on a graph G=(V,E) is a function f : V → {0, 1, 2} such that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. An RDF f is calledan outer independent Roman dominating function (OIRDF) if the set ofvertices assigned a 0 under f is an independent set. The weight of anOIRDF is the sum of its function values over ...
متن کاملBounds on the outer-independent double Italian domination number
An outer-independent double Italian dominating function (OIDIDF)on a graph $G$ with vertex set $V(G)$ is a function$f:V(G)longrightarrow {0,1,2,3}$ such that if $f(v)in{0,1}$ for a vertex $vin V(G)$ then $sum_{uin N[v]}f(u)geq3$,and the set $ {uin V(G)|f(u)=0}$ is independent. The weight ofan OIDIDF $f$ is the value $w(f)=sum_{vin V(G)}f(v)$. Theminimum weight of an OIDIDF on a graph $G$ is cal...
متن کاملTotal outer-independent domination in graphs
We initiate the study of total outer-independent domination in graphs. A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V (G) \ D is independent. The total outer-independent domination number of a graph G is the minimum cardinality of a total outer-independent dominating set of G. First we discuss the ...
متن کاملOn the outer independent 2-rainbow domination number of Cartesian products of paths and cycles
Let G be a graph. A 2-rainbow dominating function (or 2-RDF) of G is a function f from V(G) to the set of all subsets of the set {1,2} such that for a vertex v ∈ V (G) with f(v) = ∅, thecondition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled, wher NG(v) is the open neighborhoodof v. The weight of 2-RDF f of G is the value$omega (f):=sum _{vin V(G)}|f(v)|$. The 2-rainbowd...
متن کاملLower bounds on the signed (total) $k$-domination number
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8020194